TUGboat, Volume 2, No. 3

hor_line_length (q):
H:=H-q
END;
138: BEGIN
overprinting := true
END
137: BEGIN (*» fout *)
END;
138: BEGIN
read_4_bytes (w);
H:=H+vw
EXND;
END
ELSE IF ((154 <= b) AMD (b <= 217))
THEN change_font (£, chr(b-90))
END
END.

The header file TEXDIA.-H

CONST
bor_spacing = 10; (» standard HMI *)
vert_spacing = 8; (= standard VNI »)
stack_size = 125; '
mea_size = 3000;
max_font no = 5;

TYPE
byte = 0..255;
half_word = 0..65535;
oneoftwo = 1..2;
oneoffour = 1..4;
halves2 = PACKED RECORD
lhword: balf_word;
CASE oneoftwo OF
1: (rhword: half_word);

2: (byte2: byte; byte3: byte)

END;
bytesd = PACKED RECORD
byteO: byte;
bytei: byte;

CASE oneoftwo OF
1:(rhword: half_word);

2: (byte2: byte; byte3: byte)
m-

memoryword = PACKED RECORD
CASE oneoffour OF
1: (pts: real);
2:(int: integer);
3: (twohalves: halves2);
4: (fourbytes: bytesd)
END;
pts = reail;
stack_range = 0..stack_size;
mea_range = 0..mem_size;
font_range = 1..max_font_no;
Int_store = PACKED FILE OF byte;
font_type = (rm, it, 6y, ex, tt);
fonttile = FILE OF memoryword;

x % %x % X %k x ¥ ¥ % ¢

Site Reports

* % % % ¥ % ¥ ¥ % % %

NEWS FROM THE HOME FRONT
David Fuchs
Stanford University

Here’s what’s going on TpX-wise at the
Department at Stanford. Professor Knuth }
working version of the UNDOC macro proc
written in its own language (DOC). UNDOC
piles itself into a Pascal program, thus UNI
is now available in Pascal. DOC is being use
the source language for new versions of TEX]
and TEX82. All three programs (both DOC
Pascal sources) are expected to be available for |
ing to new machines in early 1982. TREX82
complete rewrite of TEX based on the exper
gained from Ignacio Zabala's translation of
TEX. Portability has been improved by removir
floating point operations. Another sticky portal
problem with the current Pascal TEX is initis
tion. Recall that installing a new TEX involves
ning the program TEXPRE, which makes a
file (called TEXINI.TBL) that represents the i
state of TEX's data structures (about 36K won
size). On TOPS20, we then run TEX, which 1
in TEXINLTBL, at which point we interrupt
process and save the current core image. Wher
usgers ask for “TEX”, they get a copy of this
image, which continues execution from where w
terrupted the first TEX run. Thus, our user
saved the not-insignificant overhead of data s
ture initialization. The resulting core image is
smaller and faster than if the initialization |
tions of TEXPRE were to be incorporated into
Unfortunately, we have found that the facili
“saving an interrupted job’s core image for later
tinuation” is not available in many environm
including VAX VMS, UNIX, and IBM timesh
gystems. Consequently, TEX users outside o
DEC 36-bit world have TEX re-read TEXINI
each time it is run, which is a significant
handicap. To help rectify the situation, TR
data structures will change to require less initi:
tion. We also plan to make a program avai
that can read TEXINI.TBL and produce P:
language initialization code to be inserted ints
TEX Pascal source before compiling. Unfortun:
varisble initialization is not standard Pasca
there must be different versions of this prograr

the Hedrick compiler, Pascal/VS, VMS Pascal,

22

Of course, the option of reading in a significantly
smaller TEXINL. TBL each time TEX is run will still
be a possibility, and will only use standard features
of Pascal.

Scott Kim's INVERSIONS has appesred in
bookstores. The text was typeset with TEX, using
fonts leased from the Alphatype Corporation.

A few people in our department spent some
of their summers porting Pascal TEX to a num-
ber of new machines. Joe Weening has a version
working on the Cray, with output to a Versatec.
Jeff Rosenschein brought up TEX in Israel on an
IBM processor running VM/CMS, with output on
a Versatec. I spent some time writing Pascal drivers
for the Autologic APS-5 and Mergenthaler Linotron
202. In fact, it’s a single program that compiles
under either IBM’s Pascal/VS or Hedrick’s Pascal

for DECSystem 10/20, and will convert DVI files -

to APS-5 DCRTU Input Command Language for-
mat, or Linotron CORA-V format, or Linotron
Binary Byte format, depending on the setting of
some compile time switches. The first version of
this program is up and running at two IBM and one
DEC20 sites. Each of these installations is running
its typesetter with the native fonts (auxiliary pro-
grams serve to convert font width information as
supplied by Autologic and Mergenthaler into TEX-
compatible TFM format). This restricts the number
of TEX's features that can be used, however, since
information about ‘height’ and ‘depth’ of characters
is not provided by either company, and can only be
guessed at heuristically, and changed manually if the
need arises. Also, much of math mode is crippled,
since the TEX math fonts are not available. There
is still some hope for the future, though. There has
been some interest expressed by individuals both at
Autologic in LA and Linotype-Paul in England in
Knuth’s Computer Modern fonts. Similarly, at the
instigation of the folks in Wisconsin, Compugraphic
seems interested in the possibility of providing the
CM fonts to 8600 users.

One other thing I worked on over the summer
was PXL files. A PXL file is the raster descrip-
tion of a font at a given size and resolution (such as
CMRI10 at 200 dots per inch). The documentation
for PXL format is contained elsewhere in this issue
(p. 8). Ovur spooling software for Varians/Versatecs
has been updated to use PXLs. PXL files supersede
the older VNT format and have the following ad-
vantages:

(1) They include sufficient information to be used
with TEX’s magnification features.

TUGboat, Volume 2, No. 3

(2) I have added a PXL mode to METAFONT,
so that PXL files can be made directly for
METAFONT fonts.

* (3) The internal layout of PXL files has been im-

proved to allow for more efficient operation of
spoolers that must deal with them.

(4) The layout is also such that PXL files can be
written sequentially from METAFONT, which
will aid in writing a transportable version of
METAFONT.

¥ ¥ ¥ x ¥ *x ¥ ¥ * % *

TEX UNDER THE NORTH STAR

Michael J. Frisch
University of Minnesota

I have made some progress on the CDC Cyber
TEX at the University of Minnesota since the last
TUGboat, but at this writing (October 1) it is not
ready for distribution. There are a few known bugs
in my version of TEX and a possibility that more
bugs will show up during further testing. (I believe
that most of the bugs are in my implementation
rather than in the original Stanford version.) As a
result, I can’t give an estimated release date.

I have a working—though probably not debugged
—device driver program for our Varian plotter.
The device driver is written in machine-dependent
FORTRAN since | can write and debug code much
faster in FORTRAN. The driver translates the DVI
file into line segments. Each segment has the same
baseline and the same size font. At the end of each
page, the driver sorts the segments by vertical posi-
tion and then outputs scan lines to the plotter one
at a time. This allows multiple column text input
to be processed.

The driver is small enough to run in interactive
mode though my version of TEX will not. Luis
Trabb-Pardo pointed out that if I can get TEX to
run in a large memory area, then I could make a
large driver keep an entire page of plotter bits in
memory and vastly simplify the driver. For lack of
time, I haven’t tried this idea. The driver I wrote
works and could be improved or rewritten later. My
thanks to David Fuchs for his Pascal DVI file print-
ing program which explained a lot of mysteries to
me about the file.

My version -of TEX now accepts almost all of
the standard BASIC file. This is a great improve-
ment over the TEX version I mentioned in the last
TUGboat. My TEX doesn’t read sll the font in-
formation files correctly, because some were not
properly converted from PDP-10 36-bit floating

TUGboat, Volume 2, No. 3

point to CDC 60-bit. Despite this, and with some
temporary changes, I have made a very short TEX
input file run and have produced a plot so I have
hopes that I will make more progress.

Though my version of TEX is not totally func-
tional, the University of Aarhus in Denmark has one
they built that works quite well. Erik Bertelson and
I recently made an oral agreement that Minnesota
will distribute their version in the U.S. With code
modifications and decreased memory size, their ver-
sion runs in about 38K words. They have printed a
couple of books using it so it is quite well debugged.
They have a Pascal version of UNDOC which has
made it a lot easier to change TEX. When I receive
a copy of their TEX, I will install it and then decide
on distribution details.

* 0k ¥ ¥ %k * %k %k X ¥ ¥

A TUGboat TOUR:
EXCERPTS FROM THE TEXNICIAN'S LOG

Barbara Beeton
American Mathematical Society

The morning mail is very exciting around the
TUGboat deadline. In it appear manuscripts and
mag tapes from all over, bearing who knows what
news, but certainly containing something unex-
pected and interesting. Putting together an issue
is also fun; the readers get to see only the printed
pages, but I get to grub around in the mud that
seeps into all the cracks.

During this tour I'll be referring to various ar-
ticles that have appeared in TUGboat, so you might
went to get out your back issues. In particular, I'll
be making a few changes to the previous TUGboat
guidebook: How to Prepare a File for Publication in
TUGboat, vol. 2, no. 1, pp. 53-54.

Although this How to ... guide states that
basic.tex and all the features of AMS-TEX are
available, as well as some formatting macros espe-
cially for TUGboat, some authors build their own
macro set from scratch, including formatting details.
This may be required by local font and device limita-
tions (see the article by John Sauter, p. 34, and the
excerpt from his output, p. 13), or the author may
simply have his own idea (different from mine) of
how his article should look in print.

Whenever possible, I try to accommodate the
author’s ideas, so long as they do no violence to
the articles which will follow when the issue is put
together. Often this can be accomplished very
simply: quarantine an article from the rest of the
issue by putting { braces } at the beginning and
end. (This was necessary for Brendan McKay’s ar-

ticle in vol. 2, no. 2, pp. 46—49; any attempt tor
the format would have taken too long, and v
certainly have resulted in unfortunate errors.)

Another technique is to lay out the pages in
a way that the “singular” item begins on 2 new |
and deal with it separately, adjusting page nun
as required. This is obviously necessary for mat
received as camera copy, but another reason w
be that, between the standard TUGboat set anc
author’s, there are too many control sequencs
fit in the hashtable. (Mike Plass’ article on sy
chart macros, p. 39, is an example of this condit

While I'm on the subject of the hashtab
should note that, here at the Math Society, w
found it necessary to change several of the
values that show up in the error message

! TEX capacity exceeded
(TEX manual, p. 144). The most important
the following: hashsize=1009, memsize=32
varsize=11500. (One or more of these changes
by now have been made in the “official” SAIL
sion at Stanford.)

In the SAIL implementation of TEX, memsis
restricted to a maximum of 215; this will be i
in Pascal TEX, but we won’t be using that
til the “definitive” version is published. vars
is effectively a subset of memsize, and there
the actual capacity of memsize is really only al
21,200. (All these values represent 36-bit word
our DECSystem 2060.) The original value of
size was 17,000, but much of our work inv
large pages of small type and, being unable t«
crease the absolute value of memsize to avoid
ceeding it, we had to increase its capacity by re
ing varsize.

hashsize can be no larger than 2!°, and
Knuth recommended that its assigned value |
prime (it used to be 797); he suggested 1,009, e
to roman MIX, of which he is particularly :
since he finished TEXing Volume 2 of The Ai
Computer Programming (TEX manual, Append;
pp. 161). These changes must be made in
SAIL (or Pascal) source, and the modules rec
piled.

To provide more facts on just how muc!
hashize, varsize and memsize are required
troublesome jobs, we've also created a “diagno:
version of TEX, which reports at the end of
completed (output) page and at each occurrene
\ddt the current and maximum (so far) demand
varsize and memsize. It also, if requested, p:
each control sequence name as it is loaded intc
hashtable, counting down as it goes from the
tial value of hashsize (1,009 less however m

24

control sequences were preloaded). Some of this
reporting facility already existed in the SAIL source
code obtained from Stanford, requiring only that
a switch, MSTAT, be turned on before compilation;
we've suggested that a similar facility be included
in the “definitive” Pascal TEX.

As TEX comes into being on more different kinds
of computers, these computers generate tapes con-
taining input files to be processed somewhere else.
TUGboat gets a good sampling. We’ve success-
fully read tapes from the following computers: VAX
(running under both VMS and UNIX), IBM 370,
PDP-11 (TgX was not running on this machine; it
was used only to prepare the tape), Univac 1100,
and DECSystems 10 and 20. The DECSystem tape
utilities, of course, generate tapes that are “native”
to our 2060. Finding a common format for exchang-
ing tapes with other machines has been more of a
challenge.

The tape format we have settled on works quite
well, although it is limited to the standard ASCH
character set, one character per tape character (§
bits), which does not accommodate font files in in-
ternal form. This format is simply a variation on the
old “card-image” format, with 80-character records,
100 records per block (8,000 characters per block).
When reading one of these tapes, we assume that no
carriage return/line feeds are present, and that all
terminal spaces can be stripped from each record.
We therefore recommend that input lines not end
with the \|J control sequence, since it cannot be dis-
tinguished from \(cr) after stripping; in practice,
this has occurred only rarely, and was easy to cor-
rect, although inconvenient.

Another tape problem is what to do about labels.
The utility program we use to read “foreign” tapes
isn’t very clear about label formats, so the easiest
thing to do is omit labels. We have just successfully
read a IBM 370-generated tape with “ANSI standard
labels” (which are not among those defined in the
utility manual, and for which Susan Plass had to try
long and hard to find a description, and make several
attempts before a good tape was actually written);
we finally treated the labels as a separate file, which
was discarded once the real file was safely on disc.
Suggestion: forget about labels. (They're probably
really necessary only for multi-volume tapes, and
no single TEX file should be that big anyhow—it
would probably be big enough to contain the entire
Encyclopedia Britannica.)

Finally, there is the matter of identifying what
is on the tape. It would be appreciated if every
tape were accompanied by a transmittal form (one
is bound into every issue of TUGboat), and by a list

TUGboat, Volume 2, No. 3

of what files the tape contains. And, just to be sure,
% (file name)
as the first line of each file will make it easier to

- check the disc copy.

Once files are safely on disc, properly identified,
they undergo some editing (as little as possible) to
ensure that they conform to TUGboat requirements.
Of particular importance for compatibility is the use
of a “standard” font set. For TUGboat (in fact, for
all the Society’s TEX work), our standard set is based
on the one used for the “book format” (TEX manual,
Appendix E, p. 152) except for \tfont ?=cmtil0 as
in basic.tex. Only font codes G through Z are free
to be used for job-specific fonts, so if a TUGboat
author has special font requirements he should note
them in comment lines at the beginning of his file
and if possible identify them by letters G-Z.

To permit automatic cross-referencing and inser-
tion of page numbers in the Table of Contents, a ref-
erence is added just following the title which allows
page numbers to be sent to a separate file. An error
in the second T-of-C page in vol. 2, no. 2, should give
you an idea how this works (when it’s dome right),
but here are the details anyhow. In each file, a line
is inserted:

\pagexref{filnam}

which invokes the definition:

\def\pagexref#1{\send9{ det #i{\curpage}}}
At the beginning of 28 TUGboat run the page number
file from the previous run is read in (~ is \chcoded
to type 0 for the duration, so that these definitions
really do become control sequences, then back to
type 12="%other”). Then a new version of the file
is opened for output, to record new page numbers
should any changes have taken place. Actually, two
different, file names are used so that the old file is
available after the run for comparison to the new
version; also, some items don’t ever get run through
TEX, and their references are added to the page
number file manually. When the page numbers con-
verge, and a final scan of Varian copy turns up no
obvious biunders, the .DVI file is shipped off to the -
Alphatype for camera copy.

The main TUGboat header file is used to for-
mat the one- and two-column pages. At present,
the two-column routine uses the \save5\page ...
\box5\hfil\page technique. I would really like to
be able to write out each column as a separate page,
but the output drivers require that each “sheet” con-
tain the same number of “pages”, and I haven’t been
able to figure out how to output two “pages” for a
single-column page. Suggestions are welcome; I'll
submit this as a problem for the next issue if no
solution has been found by then.

TUGboat, Volume 2, No. 3

The address list uses a different header file, which
does output each \page (i.e. column) separately to
the .DVI file, putting the running heads and footers
out as part of the last column. The width of each
partial page is the distance from the left boundary
of column 1 to the right boundary of the current
column. This width is recalculated for every \page;
\xcol is the column number, \xcolmax is the total
number of columns per page, \xcolwd is the number
of points each column is wide, and \intercol is
the number of points skipped between two adjacent
columns:

\def ‘\howwide{\setcount8\xcol -
\setcount3 0
\sowide}

\def \sowide{\advcount8 by -1
\advcount3 by \xcolwd
\ifpos8{\advcount3 by \intercol

\sowide}
\else{\xdef\thiswide{\count3 pt}}}

\output{ . .
\howwide
\if \xcolmax\xcol{(output headers)}
\vbox to size{
\hbox to \thiswide{\hfil\pagel}}
\if \xcolmax\xcol{{output footers)
\gdet\xcol{1}}
\else{({add 1 to \xcol)}}
I even use this to calculate the total page width
(needed for, e.g., running heads; TEX's arithmetic
is more reliable than mine):
\def \xcol{\xcolmax}
\howwide
\xzdef \pagewd{\thiswide pt}
I've used this technique to puf together pages of up
to 6 columns; if \xcolmax gets much larger, Mike
Spivak’s \result trick (vol. 2, no. 2, p. 50) has to
be used to avoid a nesting level error on \sowide.

The .DVI file now contains \xcolmax pieces
for each publishable page, each of which has the
same reference point (upper left corner). It merely
remains for them to be overlaid by the output
device driver, which is assumed to have “pasteup”
capability.

Yet another header file is used to prepare the
Errata list. You may already have noticed that
the current one has been ThEXed, unlike those sent
out with previous issues. There's a good reason
for the delay: all the previous schemes for encod-
ing “typewriter-style input” have been rather cum-
bersome, and I've been waiting for one that’s really
easy to use. Mike Spivak has made up one for his
AMS-TEX manual (The Joy of TEX) that makes input
strings look just like ordinary math coding; the only
difference is that *...* goes around in-line state-
ments, and

ok

ok

goes around displayed material. This will
tually become available for use in the main
of TUGboat, and Mike has promised to publi:
macro.

I said I'd be changing the instructions for
some of the TUGboat control sequences deseril
the old How to ... guide. Here are the chang
A new control sequence, \hpar will give you ¢

dented paragraph like this one. Unlike the
hanging indented paragraphs listed, it de
have to be \ended.

~ The control sequence \endhpar turns out

unnecessary, since hanging indentation is
sient, disappearing at the end of the ct
paragraph.

~ The line breaks in \textaddr can now be

cated by \\; I got tired of misspelling Y

and made life easier (inspired laziness mu

the greatest source of creativity known to)
Actually, there have been lots more changes t
header files as I've learned more about TEX
most of these changes are entirely transparent 1
casual TUGboat author. When I'm entirely pl
with the package, I'll submit it for publication i
Macros column. (It does depend on the AMS
macros, and is distributed with them on tape.

In a later issue I'll report on the timing &
tics for TUGboat. There have been many que
regarding how much computer time is requir
run TEX and prepare output on various de
Although TUGboat is probably atypical, it’
publication that is readily available to all TEX
and thus suitable for an example.

So keep those tapes and letters coming—1
your newsletter, and only your participatios
keep it afloat.

* % % ¥ ¥k Xx *x % * ¥ ¥

TegX FOR THE HP3000
Lance Carnes

Amazingly enough, the mighty TEX-in-]
system runs on the modest Hewlett-Packard
computer.

The TEX-in-Pascal tape was received
Stanford in May 1981 and it took approxin
two person-months to do the comversion.
were no problems of significant magnitude cc
ing the Pascal sources. As with every conv
the sources had to be edited to weed out the

26

standard” features (e.g. OTHERS:) and many of
the SYSDEP modules had to be rewritten. The
.TFM font files converted nicely from the FIX rep-
resentation of reals.

By far the most diffieult task was shoe-horning
TEX into a 16-bit word, 32K address space, non-
virtual memory machine. Accessing the 49152
records of MEM (takes 200K 16-bit words) and the
other large arrays was accomplished through liberal
use of software-implemented virtual memory. A ver-
sion of the Pascal P4 compiler was modified so that
when a large array is referenced, code is generated
to bring in chunks of the array from disc storage.

Naturally, a heavy performance penalty is paid
with this implementation. Currently it takes two
to three minutes to compile a single, simple page of
text. Additional optimizations will be implemented
before distributing this version, sometime in the
next month (November 1981). Anyone with ideas
and/or experience optimizing such an implementa-
tion is welcome to write to the address below.

This author has agreed to be the site coordinator
for the HP3000. If you are interested in obtaining a
copy of TEX for the HP3000, please write to the ad-
dress below. Indicate which model and MPE release
you have, and any output device(s) at your site. The
initial release is scheduled for December 1, 1981.

Lance Carnes
163 Linden Lane
Mill Valley, California 94941

TEX FOR THE IBM 370
Susan Plass
Stanford Center
for Information Technology

It’s finally up and running—Pascal TEX for the
IBM 370 running in the MVS batch. We have suc-
cessfully produced device independent (DV1) out-
put files which have been correctly printed on
the Stanford Computer Science Department Dover
printer. We do not have output drivers for printing
these files from an IBM 370—we hope to write those
soon.

What we do have, however, is a version of PTEX
which runs on our 3033 under MVS and under
ORVYL, Stanford’s timesharing system. The fol-
lowing is a brief outline of the changes we have made
to PTEX in order to compile under Pascal/VS, to
run on an IBM processor under MVS, and to fix a
few known CSD version bugs. We have made no
changes to TEX specifically to run under ORVYL;

TUGboat, Volume 2, No. 3

that was achieved merely by compiling TFX with an
interactive version of Pascal/VS.

1. TgX
" a) All integer subsets were changed to PACKED in-
teger subsets.
b) All REALs were changed to SHORTREAL.
¢) EXTERN was changed to EXTERNAL throughout.
d) OTHERS : was changed to OTHERWISE throughout.
e) INITPROCEDURE was changed to PROCEDURE
INIT and a call to INIT was added as the first
executed statement.
f) In DEFINEFONT, the label 0 on the statement
LABEL 50, 31, 0O
is never referenced, causing a warning from
Pascal /VS; this label was removed.
g) In the loop from N+1 to 30 within
LEXICALORER, the initialization of
TRUNCWORD [1] : =0 was added to the existing in-
itialization of HYPHENATIONWORD.

2. TEXPRE
Changes (a) through (e) of TEX above are iden-
tical for the TEXPRE module.

f) There are a few lines longer than 72 characters.
These were broken up rather than expand the
MARGINS option to 80.

g) At the start of XENT the statement SWORD :=
NULWORD was added.

h) The following were added to INITSUF:

VAR I : INTEGER;
FOR I:=0 TO 115
DO SUFFIX[I].ALPHASET:=[];
i) The following were added to INITPREF:
VAR I : INTEGER;
FOR I:=0 TO 108
DO PREFIX{I).ALPHASET:=[];

3. SYSDEP
Changes (a) through (d) of TEX and TEXPRE
are identical for SYSDEP; there is no
INITPROCEDURE, 30 CONSTANT VALUE variables
were changed to STATIC data.

e) The TYPE CHAR9 was changed to STRING(9).

f) All files were changed to type TEXT.

g) ASCII translation in and out and to and from
EBCDIC was added via the chrX and ordX ar-
rays.

h) Terminal I/O was modified so that files would
not be RESET for each reference (necessary for
a BATCH environment).

i) RESET and REWRITE statements were modified
for PASCAL/VS.

j} The routine INTOUT was replaced with an al-
gorithm more suitsble for HEXadecimal arith-
metic.

TUGboat, Volume 2, No. 3

k) Octal computations and constants were changed
to HEX.

1) A POSTAMBLE flle called PST is created in
CLOSEOUT to make this information easier to ac-
cess using standard IBM access methods.

m) The DVI file is always named DVI so that the
same DDname may be used in batch JCL.

n) Code relating to DIRECTORY references was com-
mented out; it is not needed in PASCAL/VS.

o) The FONT file directory was changed to a VS
partitioned data set.

A tape containing the source for our version of
PTEX, T§EX/370, will be available soon. For details
on obtaining a copy write to:

Susan Plass

C.I.T. Systems

Polya Hall, Room 203

Stanford University

Stanford, CA 94305
When available, TEX /370 will be supplied on an IBM
standard-labeled 1600 bpi tape-—please don't send
us a tape.

We plan to fix bugs, implement new releases, and
incorporate comments and criticisms into TEX/370
and will publish those changes periodically to users
who have ordered TEX/370. No promises are made
or implied about responses outside of such newlet-
ters, but we do welcome feedback and will try to act
on it. We also plan to implement output drivers for
several output devices attached to our 3033/3081.
These will be announced as they are implemented.

TEX IN ISRAEL

Jeffrey S. Rosenschein
Stanford University

Over the past summer, TEX was brought up at the
Weizmann Institute of Science in Rehovot, Israel.
It is running there on an IBM 4341 under CMS,
with the Imperial College Pascal P4 compiler, and
producing output on a Versatec 1200-A.

Many of the issues addressed in this implemen-
tation of TEX have been treated (repeatedly) in
previous issues of TUGboat, with regard to other
machines and other versions of Pascal; neverthe-
less, for the sake of completeness, I will briefly
outline the major points of interest. It should be
noted, however, that this was an old version of TEX,
received from Stanford in January 1981.

Editor’s note: David Fuchs comments, “R is un-
fortunate that Jeff had to use an old version of TEX-
Pascal. Most of the jollowing points had already

been cleared up by Ignacio Zabale. and Eagle
while Eagle was working on compiling TEX
Pascal/VS. Because Pascol/VS packs records a
an OTHERS construct, it seems more suitable |
current TEX than the P} compiler. TEXS2 4
rently planned to require OTHERS, but even th
vent TEX makes no assumptions regarding pa
The routine READFONTINFO is system-deper
and the documentation in TEXS82 will be more e
about exactly which bits go where.

(1) In Imperial College Pascal, there is no d
case for CASE statements; instead, a
THEN-ELSE construction was used to pe
its function.

(2) CASE statement selector variables being ¢
range caused a Pascal crash (this is not th
in Stanford’s Pascal). An IF-THEN con
tion made sure CASE statements were act
only when the selector variable was in ra

(3) Labels that were declared but not used b
be removed.

(4) The INITPROCEDURE construct does n
ist in Imperial College Pascal; instead, a ;
dure called INITIALIZE was introduced i
place. ‘

(5) Overly large procedures had to be split f
compilation to succeed. In the TEXPRE
module, these procedures were INITIALI
INITMATHCODES, INITFONTCODES,
INITSUF and INITPREF. In the TEX
module, the procedures JUSTIFICATIO!
MLISTTOHLIST had to be split.

(6) Imperial College Pascal does not allow a
ment between variables of differently r
(though identically defined) types.
the TYPE declarations of PCKDHYPH
PCKDCONSPAIR and TBLREADOUT"
in the TEX and TEXPRE modules
changed, respectively, to declarations of
PACKEDHYPHENBITS,
PACKEDCONSONANTPAIRENTRY ar
TABLEREADOUTTYPE so as to be
patible with the corresponding SYSDEP
rations.

(7) The name INPUTFILE was used in TEX
as a procedure name and as an identifier
enumerated type. To allow compilatios
identifier name was changed.

(8) FILES OF ASCH had to be changed to]
OF CHAR. .

(9) The ORD and CHR functions in Im
College Pascal map to and from the EB
character encoding scheme. This con
with TEX’s expectations of an internal

28

encoding of all characters. Two translation ar-
rays were utilized to convert characters to and
from ASCH, thus satisfying TEX’s needs.

(10) PRINTOCTAL was altered so0 2s to work on a
32 bit machine.

(11) The procedure CONNECT was used to link
internal Pascal file names to real-world files,
replacing TEX’s multiple parameter RESET
and REWRITE procedures.

(12) All code that looked for an “end-of-line” charac-
ter (usually a carriage return) was changed to
utilize the EOLN function. This was neces-
sary due to the record-oriented structure of IBM
files. Likewise, instead of writing a carriage
return onto a file to signify an end-of-line, the
procedure WRITELN was used to finish off a
record and transfer it to a file.

(13) Imperial College does not pack records as ex-
pected in the SYSDEP module code. To
overcome this, the PTEXINLTBL file was
changed from a file of INTEGER to a file of
MEMORYWORD, extra routines were intro-
duced to build correct font data structures, and
bytes were explicitly packed into integers for
the DVI file.

(14) The SCANNUMBER routine in TEX and

TEXPRE makes no check for overflow as it -

reads in a number from the user’s TEX input
file. If the hapless user includes too large a
number, Pascal crashes, and there is no way
of knowing that the overflow was not internal
to TEX (i.e. some previously undiscovered bug).
A check was introduced in the SCANNUMBER
routine so that if overflow is about to occur, the
ERROR procedure is called. This gives a stan-
dard dump of the buffer and allows the user a
graceful recovery.

Due mainly to Imperial College Pascal’s
lack of record packing facilities (which causes
MEMORYWORDs to each occupy 4 words of
memory), it is necessary to have a runtime storage
allocation of approximately 2000K to run TEX.
Production of raster files for the Versatec takes
about 700K. As of this writing, the system has been
put through a series of relatively small tests, and (so
far) seems to be working without difficulty.

As with all those who have brought TEX up at
various installations, I have several suggestions for
changes to the code; these are intended solely to
aid portability, and increases in portability may, of
course, be purchased at a cost to some other impor-
tant consideration (such as efficiency). Nevertheless,
if TEX-in-Pascal is really intended to be a portable
program, there ought to be more consideration of

TUGboat, Volume 2, No. 3

standard Pascal features, and sensitivity to differing
machines. The two main suggestions are:

(1) The OTHERS construct should be removed
once and for all; it has no place in code that
is advertised as portable, especially not in the
actual TEXPRE and TEX modules (a8 opposed
to the SYSDEP module). Its removal was
time consuming, and it should not have to be
carried out repeatedly at various installations.
At times, finding the correct values to use in the
IF-THEN construct was non-trivial due to nest~
ing of CASE statements and the appearance of
labels within procedures. In addition, there was
an abnormally high chance of an error creeping
into the code; such an error would be extremely
difficuit to track down.

(2) Assumptions about packing should be removed
from the code; experience has shown that
this restructuring is quite feasible. Although
this will result in slight degradation of TEX's
efficiency at some installations, it will cause
TEX itself to be implemented with much
greater ease. This is especially crucial in the
READFONTINFO routine, where insufficiently
explained assumptions about packing led, ini-
tially, to a serious implementation error. To
help increase efficiency at those installations
with “correctly” packing compilers, helpful
hints on how to convert certain code should be
included with the documentation; the defauit,
however, ought to be code that will run even in
a non-packing environment.

£k & X £ ¥ ¥ ¥ % * %

TgX AT THE UNIVERSITY OF MICHIGAN
SUMMARY OF PROGRESS

David Rodgers

The University of Michigan Computing Center
has installed TgX on an IBM 370/148 running un-
der VM(CMS). Work continues on converting the
gystem-dependent module to run under the MTS
operating system on an Amdahl machine. The in-
stallation process would have gone unhindered, ex-
cept for our inexperience with Pascal, the VM/CMS
operating system, and the system editor. The en-
tire installation process required about three weeks
of full-time effort (spread over six weeks) and prob-
ably could have been done in half the time by an
experienced Pascal/VM/CMS programmer.

A device driver has been installed for a Linotron
202 phototypesetter in the Ann Arbor area and we
are evaluating options for supporting other proof-

TUGboat, Volume 2, No. 3

and final-quality output devices available in the
University community or through local vendors.
We are especially interested in exploring the

feasibility of using intelligent terminals (e.g.,
ONTEL) as a source of local intelligence for driving
printing devices. If anyone has had any experience
with this sort of output configuration or wants to ex-
press a prejucide, we would welcome an opportunity
to discuss them. Please write

David L. Rodgers

University of Michigan

Computing Center
1075 Beal Avenue
Ann Arbor, MI 48109

VAX ON UNIX
Bob Morris
UMASS/Boston

The Computer Science Department at Cal Tech
has succeeded in running TEX compiled under the
Berkeley VAX UNIX Pascal Compiler. By the time
you read this, I hope we will have CIT’s work at test
sites and be working toward a clean public distribu-
tion through one or another traditional UNIX dis-
tribution arrangement. The work at CIT was done
by Calvin Jackson, whose report I have included
below, slightly edited. Following Calvin’s report is
one on device driver work at Brown University.

TEX AT CALTECH
Calvin Jackson

We have PTEX running on the VAX/780 at the
Computer Science Department of CalTech. The
operating system is Berkeley UNIX Version 4.0. We
have compiled with Version 4.1 and corrected a
minor problem-—an octal constant > maxint.

We acquired a version of PTEX via the
ARPANET in May 1981 after the TEX workshop
at Stanford. In July we had DVI output consistent
with Stanford test cases. A new version of TEX was
retrieved from Stanford in July, and approximately
6 hours was required to make the local modifications
and produce acceptable test results.

The Department has a DEC-20 and a VAX/780.
Output devices are a Trilog C-100 (100bpi, VAX),
XGP (200bpi, DEC-20), Applicon plotter (125bpi,
tape), and various HP plotters. Some specialized
graphics terminals are also available.

Our experiences with PTEX are similiar to
reported in previous issues of TUGboat. We :
with many published suggestions regarding b
tutorial information about SYSDEP concepts.
found that most of our problems were due to la:
experience with Pascal and machine dependenci
Pascal data representation. The DOC listings
essential; we are impressed with their quality
completeness.

Compilation Problems, Source Configuration

After reviewing the DOC listing and some
samples in the UNDOC version we performed s
tests to determine how some potential problem &
are handled by the Berkeley compiler. After
analysis we made some basic decisions. A preprc
sor would be developed to perform some des
source transformations, separate compilation t
were desired, and the SYSDEP program woul
divided into smaller compilation units. A sir
“Jex” program was prepared to do the source tr
formations; it is referred to as “pedit” in the
lowing discussion. The decision to use a preprc
sor was strongly influenced by the regularif;
the UNDOC version; if some other source f
is used the preprocessor might not be so sinm
The separate compilation-unit decision was base
compilation time and the expectation that we w
be doing a lot of compilations of areas of SYSE

Following are the observations and the appri
adopted to cope.

The type allocation model used by Berkeley it
following:
char: 8bits. This type will perform as expecte

long as the value range used is 0..127.
real: 64bits.
integer: 8, 16, or 32bits. Integers are signed
stated in the Report). The signed attri
means that a subrange of 0..255 require
bits.

Variant records are optimal within this definitic
This model allocates 64bits for the
MEMORYWORD. Note that 64bits would be
quired if reals were shorter. Storage economy
quires short reals and signed subrange types (or

treatment of certain integers as unsigned).

The DVI file is byte oriented and is defined as
subrange type 0..255. We changed this definitio
be —128..127. The DVI output routine and o
routines that interface to a DVI file convert va
> 127 to value —256 on output and convert vz
< 0 to value 4256 on input. TFM files are han
on a similar basis.

In case-statements, if none of the case-const
is equal to the case-index, a runtime error is %

30

times reported. My experience is that the results are

unpredictable.
PTEX uses a compiler specific feature for default

(OTHERS) case-constants. We decided to use the

following construct.
if expression in set-constructor then

case case-index of

end else begin
{ ... OTHERS code follows}

end

This process is performed semi-automatically by

pedit. A program scans the source for case-
statements, inserts the skeleton if statements, and
generates the set-constructor on a auxiliary listing.
We then manually edit in the set-constructor, the
program also provides a line number directory of all
case-statementas.
We did some after the fact timing studies and
determined that the preferred transformation is
CASEARG :=case-index;
i? not (CASEINDEX in
[LOWERLINIT,UPPERLIMIT])
then CASEARG:=LOWERLIMIT-1;
case CASEARG of

LOWERLIMIT-1,otherslist:
{OTHERS code}
end

This provides acceptable efficiency, does not make
an exception of the case-index being a function call,
may require a few extra editing keystrokes, and is
compatible with the program that scans and alters
the source.

One procedure (VARSYMBOL) contained some
inaccessible code due to the omission of a case-
constant. The instance was reported by the com-
piler. We edited in the appropriate case constant.
This condition did not exist in the second set of
sources we retrieved (July 1981).

Equivalence of type requires that each variable
be defined by the same type declaration. This
was significant because of our decision to use the
separate compilation feature. We manually reviewed
the programs for common type declarations and
placed them on an “include” file. Our first copy of
PTEX (May 1981) contained instances of the same
types with different spellings. A subsequent copy
(July 1981) had resolved these problems. It was in-
teresting that we had guessed wrong on the eventual
spellings. This process was not very time consum-
ing, there are surprisingly few type definitions and
the lexical order of the program simplifies the task.

TUGboat, Volume 2, No. 3

The empty-statement is incorrectly handled in
the following construct:

.if boolean-expression then empty-statement

-@lse statement

A diagnostic is provoked. A “begin end” or system
procedure “null” in place of the empty-statement
will satisfy the compiler. This task was assigned to
the program “pedit”.
Labels that occur in the label-declaration-part
must occur in the statement-part. Labels that did
not occur in the statement-part were edited out
of the statement-declaration-part. The diagnostics
provided by the compiler were the cues.
The standard compilation mode treats upper-case
as different from lower-case. In the standard mode
keywords are lower-case. A compile option permits
this treatment to be suppressed; the option specifies
that warnings should be produced for non-standard
Pascal. However, we could not use the separate com-
pilation capability if the “standard” Pascal option
was selected. We assigned the task of converting
keywords and standard identifiers to pedit.
Separate compilation units are supported by the
compiler. The compile system rigidly enforces the
concept that the fragmented program be equiv-
alent to its composite model. This enforcement is
primarily at the compilation and linkage stages.
We manually reviewed the compilation text and
constructed the following compilation units. The
choice was primarily based on the DOC version,
experience has suggested better fragmentation.
texpre.p: Vanilla TEXPRE.PAS except for the dele-
tion of common subroutines and types.

tex.p: Vanilla TEX pas except for the deletion of
common subroutines and types.

sysdep.p: SYSDEP.PAS (DOC) Section 16, 64 - max,
min and output routines.

basicio.p: SYSDEP.PAS Section 23 - Basic I/O pro-
cedures.

string.p: SYSDEP.PAS Section 17 - The String
Handler.

filename.p: SYSDEP.PAS Section 51 ~ Scanning File
Names.

infont.p: SYSDEP.PAS Section 57 - Reading Font
Information.

. fetchdata.p: SYSDEP.PAS Section 71 — Retrieving

‘Data Structures.

storedata.p: SYSDEP.PAS Section 69 — Storing Data
Structures.

globsysdep.h: SYSDEP.PAS Global variable and pro-
cedure declarations for SYSDEP.

globeonst.h: SYSDEP.PAS Global constant-definition-
part.

